Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP.
نویسندگان
چکیده
Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels, are crucial in neuronal excitability and signal transduction of sensory cells. HCN and CNG channels are activated by binding of cyclic nucleotides to their intracellular cyclic nucleotide-binding domain (CNBD). However, the mechanism by which the binding of cyclic nucleotides opens these channels is not well understood. Here, we report the solution structure of the isolated CNBD of a cyclic nucleotide-sensitive K(+) channel from Mesorhizobium loti. The protein consists of a wide anti-parallel beta-roll topped by a helical bundle comprising five alpha-helices and a short 3(10)-helix. In contrast to the dimeric arrangement ('dimer-of-dimers') in the crystal structure, the solution structure clearly shows a monomeric fold. The monomeric structure of the CNBD supports the hypothesis that the CNBDs transmit the binding signal to the channel pore independently of each other.
منابع مشابه
Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel.
Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels, are activated by binding of ligands to a domain (CNBD) located on the cytoplasmic side of the channel. The underlying mechanisms are not well understood. To elucidate the gating mechanism, structures of both the ligand-free and -bound CNBD are required. Several crystal structures of the CNBD from HCN2 and a bacterial CNG c...
متن کاملA Cyclic Nucleotide Modulated Prokaryotic K+ Channel
A search of prokaryotic genomes uncovered a gene from Mesorhizobium loti homologous to eukaryotic K(+) channels of the S4 superfamily that also carry a cyclic nucleotide binding domain at the COOH terminus. The gene was cloned from genomic DNA, and the protein, denoted MloK1, was overexpressed in Escherichia coli and purified. Gel filtration analysis revealed a heterogeneous distribution of pro...
متن کاملStructural Basis of Ligand Activation in a Cyclic Nucleotide Regulated Potassium Channel
Here we describe the initial functional characterization of a cyclic nucleotide regulated ion channel from the bacterium Mesorhizobium loti and present two structures of its cyclic nucleotide binding domain, with and without cAMP. The domains are organized as dimers with the interface formed by the linker regions that connect the nucleotide binding pocket to the pore domain. Together, structura...
متن کاملLigand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1
Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorh...
متن کاملReal-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels
Eukaryotic cyclic nucleotide-modulated (CNM) ion channels perform various physiological roles by opening in response to cyclic nucleotides binding to a specialized cyclic nucleotide-binding domain. Despite progress in structure-function analysis, the conformational rearrangements underlying the gating of these channels are still unknown. Here, we image ligand-induced conformational changes in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 10 7 شماره
صفحات -
تاریخ انتشار 2009